skip to main content


Search for: All records

Creators/Authors contains: "McGill, Bonnie M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    As we build a more diverse, equitable, and inclusive culture in the ecological research community, we must work to support new ecologists by empowering them with the knowledge, tools, validation, and sense of belonging in ecology to succeed. Undergraduate research experiences (UREs) are critical for a student's professional and interpersonal skill development and key for recruiting and retaining students from diverse groups to ecology. However, few resources exist that speak directly to an undergraduate researcher on the diversity, equity, and inclusion (DEI) dimensions of embarking on a first research experience. Here, we write primarily for undergraduate readers, though a broader audience of readers, especially URE mentors, will also find this useful. We explain many of the ways a URE benefits undergraduate researchers and describe how URE students from different positionalities can contribute to an inclusive research culture. We address three common sources of anxiety for URE students through a DEI lens: imposter syndrome, communicating with mentors, and safety in fieldwork. We discuss the benefits as well as the unique vulnerabilities and risks associated with fieldwork, including the potential for harassment and assault. Imposter syndrome and toxic field experiences are known to drive students, including students from underrepresented minority groups, out of STEM. Our goal is to encourage all students, including those from underrepresented groups, to apply for UREs, build awareness of their contributions to inclusion in ecology research, and provide strategies for overcoming known barriers.

     
    more » « less
  2. Abstract

    Groundwater irrigation of cropland is expanding worldwide with poorly known implications for climate change. This study compares experimental measurements of the net global warming impact of a rainfed versus a groundwater‐irrigated corn (maize)–soybean–wheat, no‐till cropping system in the Midwest US, the region that produces the majority of U.S. corn and soybean. Irrigation significantly increased soil organic carbon (C) storage in the upper 25 cm, but not by enough to make up for the CO2‐equivalent (CO2e) costs of fossil fuel power, soil emissions of nitrous oxide (N2O), and degassing of supersaturated CO2and N2O from the groundwater. A rainfed reference system had a net mitigating effect of −13.9 (±31) g CO2e m−2 year−1, but with irrigation at an average rate for the region, the irrigated system contributed to global warming with net greenhouse gas (GHG) emissions of 27.1 (±32) g CO2e m−2 year−1. Compared to the rainfed system, the irrigated system had 45% more GHG emissions and 7% more C sequestration. The irrigation‐associated increase in soil N2O and fossil fuel emissions contributed 18% and 9%, respectively, to the system's total emissions in an average irrigation year. Groundwater degassing of CO2and N2O are missing components of previous assessments of the GHG cost of groundwater irrigation; together they were 4% of the irrigated system's total emissions. The irrigated system's net impact normalized by crop yield (GHG intensity) was +0.04 (±0.006) kg CO2e kg−1yield, close to that of the rainfed system, which was −0.03 (±0.002) kg CO2e kg−1yield. Thus, the increased crop yield resulting from irrigation can ameliorate overall GHG emissions if intensification by irrigation prevents land conversion emissions elsewhere, although the expansion of irrigation risks depletion of local water resources.

     
    more » « less